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What’s All This Then?
1. Scope: Elements of detection theory, with focus on the practical and computational 

aspects of digital waveform detection.
2. Non-Scope: You will not watch me debug code in real time; no one wants to see 

that.
3. Approach: start to finish demonstration of a digital Rayleigh wave detector:

1. The retrograde, elliptically polarized motion (REPM) signal detector, with possible additional 
reference to:

2. Computation of p-values
3. Power detectors (STA/LTA, F-detectors)
4. Correlation detectors
5. Eigenmotion detectors 

4. A Hypothetical Course Catalog Description: common tests for detectors; 
efficient, point-wise matrix inversions (2x2, 3x3); fitting densities to normalized 
histograms; setting false alarm rate thresholds; Bayesian estimate of parameters 
and thresholds;  physical interpretation of noncentrally parameters; empirical 
quantification of detector performance ß [Requires waveform injection tutorial]
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Bottom Line Up Front (High-Fidelity BLUF): We Will (1/4)

𝑁 − 2
2

𝒙!"𝑼 𝑼"𝑼 #$𝑼"𝒙!
𝒙!" 𝑰 − 𝑼 𝑼"𝑼 #$𝑼" 𝒙!

Collect observables
Processed data 
for hypotheses

Verify statistical model

Form hypothesis 
signal model…

Form hypothesis 
noise model

Compute GLR at 
each sample
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Bottom Line Up Front (High-Fidelity BLUF): We Will (2/4)

𝑁 − 2
2

𝒙!"𝑼 𝑼"𝑼 #$𝑼"𝒙!
𝒙!" 𝑰 − 𝑼 𝑼"𝑼 #$𝑼" 𝒙!

Collect observables
Processed data 
for hypotheses

Verify statistical model

…Observer quantifies

Form hypothesis 
noise model

Compute GLR at 
each sample
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Bottom Line Up Front (High-Fidelity BLUF): We Will (3/4)
Compute GLR at 

each sample Output detection statistic Bin detection statistic, 
estimate parameters,

compute threshold for CFAR

CFAR is not a p-value

Detection statistic 
is not Gaussian

Lecture
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Bottom Line Up Front (High-Fidelity BLUF): We Will (4/4)
Lecture
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Module 0: 
Meta-Detection

Lecture
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The Scientific Method1

Detectors are Binary Hypothesis Tests that 
Quantify the Scientific Method

Signal Detection2

1. Define a question / observation
2. Form a prediction (a hypothesis)
3. Gather data
4. Analyze the Data
5. Accept or refute your prediction 

(hypothesis)

1. Does the region of interest host a target 
source?

2. Form competing hypotheses: ℋ!: 
sensors record noise + background; 
ℋ": sensors also record target sources.

3. Input digital data into competing models 
for each hypothesis.

4. Collect data and form a generalized 
likelihood ratio (GLRT).

5. Compare detection statistics to 
thresholds to declare which hypothesis 
is true.

1American Museum of Natural History
2From binary hypothesis tests

Lecture
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Single modality detection: terminology, concepts
The Five Steps of Detection (think Scientific Method)

ℋ': 𝒙 = noise + background

ℋ(: 𝒙 = noise + background + signal

3PDF 𝒙 ℋ(
3PDF 𝒙 ℋ'

= 𝑠 𝒙
ℋ(
≷
ℋ'

𝑡
𝑢 = 1

𝑢 = 0

Data	ModelsSource GLR Detector Decision

Form	competing	hypotheses

Gather	data	/	observables

Analyze	data/observables

Accept	or	reject	initial	hypothesis

Data	pre-processing:	detrend,	taper	and	bandpass	filter		(possibly	in	a	filter	bank)

Density	processing:	estimate	distributional	
parameters	that	shape	density	and	histograms	

Origin	of	observables

Self-Study
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Module 1: 
Before Signal Detection

Lecture
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Module 1: Before Signal Detection (1/7)

§ For each channel of waveform data:
§ Select time segments such that noise statistics remain static (suggest 15 min to ≤ 2 hr)
§ Decimate or resample (if required) before you:
§ Detrend the data to remove trend line or mean

§ Possibly high-pass filter data to remove very long period trends
§ Taper the data ends to prevent spectral leakage 
§ Process data with filter(s) over sensical bands (e.g., ≤ 85% Nyquist).

Perform signal detection against processed data

Before After	(ready	for	signal	detection)

Lecture
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Module 1: Before Signal Detection (2/7)

Do not usually perform signal detection against raw data

𝒙# = 𝑥#", 𝑥#$ , 𝑥#%, … , 𝑥#& , … , 𝑥#(()"), 𝑥#( ≠ target	data

lanlTracePlot.m
Lecture
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Module 1: Before Signal Detection (3/7)

Detrend target data to remove trends and mean prior to tapering

lanlTraceDetrend.m
Lecture
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Module 1: Before Signal Detection (4/7)

Taper target data at the ends to prevent spectral leakage upon filtering 

lanlTukeyTaper.m, 
lanlTraceDetrend.m

Lecture
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Module 1: Before Signal Detection (5/7)

Process data with minimum phase bandpass filter to minimize acausal time shifts

𝒙# = 𝑥#", 𝑥#$ , 𝑥#%, … , 𝑥#& , … , 𝑥#(()"), 𝑥#( = target	data

lanlTukeyTaper.m, 
lanlTraceDetrend.m,

lanlTraceFiltButter.m

Lecture
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Module 1: Before Signal Detection (6/7)

Compare correctly processed data with incorrectly pre-processed data

lanlTracePlot.m
Lecture



174/3/23

Module 1: Before Signal Detection (7/7)

A signal detector could erroneously declare that unprocessed end-samples include signal

lanlTracePlot.m
Lecture
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Module 2: 
Verify Statistical Assumptions 

Lecture
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Module 2: Verify Statistical Assumptions (1/8)
Test normality of ~1 hr of the target data

raw

processed Taper effects

Lecture
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Module 2: Verify Statistical Assumptions (2/8)

raw

processed Duration to Bin
§ Seismic: 45min—1.5hr
§ Infrasound: 15—30min
§ Radio Frequency (250 MHz ): 

100ms—250ms 

Durations reflect expected time that 
noise stays statistically stationary, 
informed by experience

Verify duration of target data to test is within “best-practice” durations

Lecture
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Module 2: Verify Statistical Assumptions (3/8)

raw

Do not bin all data; exclude small and large quantiles [0.01, 0.995]

Lecture
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Module 2: Verify Statistical Assumptions (4/8)
Verify that quantiles approximately meet “best practices” to exclude

Quantiles to Exclude
§ Seismic (raw): [0.01, 0.995]
§ Infrasound (filtered): [0.025, 0.99]
§ Radio Frequency (filtered; 250 MHz): 

[> 0.01, < 0.995]

Quantiles reflect expected time that 
noise stays statistically stationary, 
informed by experience

Lecture
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Module 2: Verify Statistical Assumptions (5/8)
Bin; raw noise data appears normal/Gaussian but shows high variance and a non-zero mean 

Remove data in these quantiles

Zero

Normal PDF

Lecture
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Module 2: Verify Statistical Assumptions (6/8)
Longer duration data, contains same explosion-sourced event

Quantiles to Exclude
§ Seismic (filtered): [0.01, 0.995]; 

applies to two-sided quantile of 
absolute value of data 𝒙 (removes 
taper biases)

Quantiles reflect expected time that 
noise stays statistically stationary, 
informed by experience

Lecture
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Module 2: Verify Statistical Assumptions (7/8)

Remove data in these quantiles

Normal PDF

Taper effects

Bin; processed data is normal/Gaussian but shows lower variance and a zero mean 

Zero

Lecture
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Module 2: Verify Statistical Assumptions (8/8)
Caveat: Filtering induces correlation. Each sample is a weighted combination of its neighbors.

𝑥& = 𝑎&)( - 𝑥&)( + 𝑎&)()" - 𝑥&)()" +⋯𝑎&𝑥& + 𝑎&+"𝑥&+" +⋯

Lecture
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Module 3: 
Form Competing Data Hypothesis

Lecture
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Single modality detection: terminology, concepts

Status Update: What we’ve Done Already

ℋ': 𝒙 = noise + background

ℋ(: 𝒙 = noise + background + signal

3PDF 𝒙 ℋ(
3PDF 𝒙 ℋ'

= 𝑠 𝒙
ℋ(
≷
ℋ'

𝑡
𝑢 = 1

𝑢 = 0

Data	ModelsSource GLR Detector Decision

Data	pre-processing:	detrend,	taper	and	bandpass	filter		(possibly	in	a	filter	bank)

Lecture



294/3/23

Module 3: Form Competing Data Hypothesis (1/21)
Lecture
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Module 3: Form Competing Data Hypothesis (2/21)
Lecture



314/3/23

Module 3: Form Competing Data Hypothesis (2/18)

𝒙# = 𝑥#", 𝑥#$ , 𝑥#%, … , 𝑥#& , … , 𝑥#(()"), 𝑥#(

Lecture
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Module 3: Form Competing Data Hypothesis (3/18)

𝒙# = 𝑥#", 𝑥#$ , 𝑥#%, … , 𝑥#& , … , 𝑥#(()"), 𝑥#(

Lecture
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Module 3: Form Competing Data Hypothesis (4/18)

Data	Model	for	Noise

Data	Model	for	Signal	+	Noise

Lecture
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Module 3: Form Competing Data Hypothesis (5/18)

ℋ!:Data is only noise:

ℋ":
Data includes 
Rayleigh wave

Lecture
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Module 3: Form Competing Data Hypothesis (6/18)

ℋ!: 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏%

ℋ": 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏% + 𝒔# 𝒔$ 𝒔%

Data is only noise:

Data includes 
Rayleigh wave

Lecture
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Module 3: Form Competing Data Hypothesis (7/18)

ℋ!: 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏%

ℋ": 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏% + 𝒔# 𝒔$ 𝒔%

Data is only noise:

Data includes 
Rayleigh wave

Statistical and deterministic models

Lecture
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Module 3: Form Competing Data Hypothesis (8/18)

ℋ!: 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏%

ℋ": 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏% + 𝒔# 𝒔$ 𝒔%

Data is only noise:

Data includes 
Rayleigh wave

Statistical and deterministic models

𝒏& ~𝒩 0, 𝜎$𝑰
(𝑘 = 𝐸,𝑁, 𝑍)

Lecture
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Module 3: Form Competing Data Hypothesis (9/18)

ℋ!: 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏%

ℋ": 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏% + 𝒔# 𝒔$ 𝒔%

Data is only noise:

Data includes 
Rayleigh wave

Statistical and deterministic models

Lecture
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Module 3: Form Competing Data Hypothesis (10/18)

ℋ!: 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏%

ℋ": 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏% + 𝒔# 𝒔$ 𝒔%

Data is only noise:

Data includes 
Rayleigh wave

Statistical and deterministic models

𝒏# ~
1

2𝜋𝜎$
(
$
exp −

𝒙# − 𝒔# $

2𝜎$

Lecture
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Module 3: Form Competing Data Hypothesis (11/18)

ℋ!: 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏%

ℋ": 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏% + 𝒔# 𝒔$ 𝒔%

Data is only noise:

Data includes 
Rayleigh wave

Statistical and deterministic models

𝒏# ~
1

2𝜋𝜎$
(
$
exp −

𝒙# − 𝒔# $

2𝜎$

The sigma should be a covariance matrix, a 
scalar effective degree of freedom 
parameter accounts for sample covariance

Lecture
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Module 3: Form Competing Data Hypothesis (12/18)

ℋ!: 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏%

ℋ": 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏% + 𝒔# 𝒔$ 𝒔%

Data is only noise:

Data includes 
Rayleigh wave

Statistical and deterministic models

𝒏# ~
1

2𝜋𝜎$
(
$
exp −

𝒙# − 𝒔# $

2𝜎$

Unknowns; includes effective degree of 
freedom parameter

Lecture
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Module 3: Form Competing Data Hypothesis (13/18)

ℋ!: 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏%

ℋ": 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏% + 𝒔# 𝒔$ 𝒔%

Data is only noise:

Data includes 
Rayleigh wave

Statistical and deterministic models

𝒏# ~
1

2𝜋𝜎$
(
$
exp −

𝒙# − 𝒔# $

2𝜎$

Recall the Gaussian density and 
normalized histograms match

Unknowns; includes effective degree of 
freedom parameter

Lecture
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Module 3: Form Competing Data Hypothesis (14/18)

ℋ!: 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏%

ℋ": 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏% + 𝒔# 𝒔$ 𝒔%

Data is only noise:

Data includes 
Rayleigh wave

Deterministic Model in Pictures 

Lecture
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Module 3: Form Competing Data Hypothesis (15/18)

ℋ!: 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏%

ℋ": 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏% + 𝒔# 𝒔$ 𝒔%

Data is only noise:

Data includes 
Rayleigh wave

Statistical and deterministic models

𝑥)(𝕣, 𝜔) ∝D
*

𝑟+ 𝔷
8𝑐𝑈𝐼(

2
𝜋𝑘*𝕣

exp 𝑗 𝑘*𝕣 +
𝜋
4 ∎

𝑥,(𝕣, 𝜔) ∝D
*

𝑟( 𝔷
8𝑐𝑈𝐼(

2
𝜋𝑘*𝕣

exp 𝑗 𝑘*𝕣 −
𝜋
4

∎

Aki and Richards (Eq. 7.150-7.151)

Lecture
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Module 3: Form Competing Data Hypothesis (16/18)

ℋ!: 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏%

ℋ": 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏% + 𝒔# 𝒔$ 𝒔%

Data is only noise:

Data includes 
Rayleigh wave

Statistical and deterministic models

AmplitudesRadial displacement 90 phase advance

𝑥)(𝕣, 𝜔) ∝D
*

𝑟+ 𝔷
8𝑐𝑈𝐼(

2
𝜋𝑘*𝕣

exp 𝑗 𝑘*𝕣 +
𝜋
4 ∎

𝑥,(𝕣, 𝜔) ∝D
*

𝑟( 𝔷
8𝑐𝑈𝐼(

2
𝜋𝑘*𝕣

exp 𝑗 𝑘*𝕣 −
𝜋
4

∎

Lecture
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Module 3: Form Competing Data Hypothesis (17/18)

ℋ!: 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏%

ℋ": 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏% + 𝒔# 𝒔$ 𝒔%

Data is only noise:

Data includes 
Rayleigh wave

The previous slides model the noise as Gaussian, but with unknown noise variance 
that we can estimate.

If data contain a Rayleigh wave, the previous slide also models the radial observed 
displacement (or velocity) as quasi-proportional to the vertical component of the 
observed displacement, after a 90-degree phase delay. The data contain unknown
source location and amplitude proportionality constant.

In Words

Lecture
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Module 3: Form Competing Data Hypothesis (18/18)

ℋ!: 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏%

ℋ": 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏% + 𝒔# 𝒔$ 𝒔%

Data is only noise:

Data includes 
Rayleigh wave

Combine radial rotation and phase advance information:

𝒙, = 𝐴 cos 𝛼 𝒙( + 𝐵 sin 𝛼 𝒙-≡ 𝜃"𝒙( + 𝜃$ 𝒙-

90o Phase-Advance 𝒙# ≡ 𝒥 𝒙# ∝ 𝒙,

Hilbert transform

Lecture
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Module 4: 
Build Test Statistic

Lecture
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Module 4: Build Test Statistic (1/10)

ℋ(: 𝒥 𝒙) = 𝒙- 𝒙. 𝜽 + 𝒏 ~ 𝒩 𝒙- 𝒙. 𝜽, 𝜎+𝑰

≡ 𝑼𝜽 + 𝒏 ~ 𝒩 𝑼𝜽, 𝜎+𝑰

ℋ': 𝒥 𝒙) = 𝒏 ~ 𝒩(𝟎, 𝜎+𝑰)Data is only noise

Data includes 
Rayleigh wave

Lecture
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Module 4: Build Test Statistic (2/10)

ℋ(: 𝒥 𝒙) = 𝒙- 𝒙. 𝜽 + 𝒏 ~ 𝒩 𝒙- 𝒙. 𝜽, 𝜎+𝑰

≡ 𝑼𝜽 + 𝒏 ~ 𝒩 𝑼𝜽, 𝜎+𝑰

ℋ': 𝒥 𝒙) = 𝒏 ~ 𝒩(𝟎, 𝜎+𝑰)Data is only noise

Data includes 
Rayleigh wave

Noise	is	also	transformed,	but	rotated	and	Hilbert	
transformed	Gaussian	noise	is	still	Gaussian	noise,	so	we	can	
write	it	as	𝒏.

Lecture
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Module 4: Build Test Statistic (3/10)

ℋ(: 𝒥 𝒙) = 𝒙- 𝒙. 𝜽 + 𝒏 ~ 𝒩 𝒙- 𝒙. 𝜽, 𝜎+𝑰

≡ 𝑼𝜽 + 𝒏 ~ 𝒩 𝑼𝜽, 𝜎+𝑰

ℋ': 𝒥 𝒙) = 𝒏 ~ 𝒩(𝟎, 𝜎+𝑰)Data is only noise

Data includes 
Rayleigh wave

GLR = amax
/! 𝜽

1

2𝜋𝜎+
.
+
exp −

𝒥 𝒙) − 𝑼𝜽 +

2𝜎+ max
/!

1

2𝜋𝜎+
.
+
exp −

𝒥 𝒙) +

2𝜎+

Lecture
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Module 4: Build Test Statistic (4/10)

ℋ(: 𝒥 𝒙) = 𝒙- 𝒙. 𝜽 + 𝒏 ~ 𝒩 𝒙- 𝒙. 𝜽, 𝜎+𝑰

≡ 𝑼𝜽 + 𝒏 ~ 𝒩 𝑼𝜽, 𝜎+𝑰

ℋ': 𝒥 𝒙) = 𝒏 ~ 𝒩(𝟎, 𝜎+𝑰)Data is only noise

Data includes 
Rayleigh wave

GLR = amax
/! 𝜽

1

2𝜋𝜎+
.
+
exp −

𝒥 𝒙) − 𝑼𝜽 +

2𝜎+ max
/!

1

2𝜋𝜎+
.
+
exp −

𝒥 𝒙) +

2𝜎+

Maximize over unknown parameters in the numerator and denominator

Lecture
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Module 4: Build Test Statistic (5/10)

ℋ(: 𝒥 𝒙) = 𝒙- 𝒙. 𝜽 + 𝒏 ~ 𝒩 𝒙- 𝒙. 𝜽, 𝜎+𝑰

≡ 𝑼𝜽 + 𝒏 ~ 𝒩 𝑼𝜽, 𝜎+𝑰

ℋ': 𝒥 𝒙) = 𝒏 ~ 𝒩(𝟎, 𝜎+𝑰)Data is only noise

Data includes 
Rayleigh wave

GLR = amax
/! 𝜽

1

2𝜋𝜎+
.
+
exp −

𝒥 𝒙) − 𝑼𝜽 +

2𝜎+ max
/!

1

2𝜋𝜎+
.
+
exp −

𝒥 𝒙) +

2𝜎+

Maximize over unknown parameters in the numerator and denominator

Call 𝒥 𝒙# the (post-processed) variable 𝒙# hereon to make notation clearer

Lecture
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Module 4: Build Test Statistic (6/10)

ℋ(: 𝒥 𝒙) = 𝒙- 𝒙. 𝜽 + 𝒏 ~ 𝒩 𝒙- 𝒙. 𝜽, 𝜎+𝑰

≡ 𝑼𝜽 + 𝒏 ~ 𝒩 𝑼𝜽, 𝜎+𝑰

ℋ': 𝒥 𝒙) = 𝒏 ~ 𝒩(𝟎, 𝜎+𝑰)Data is only noise

Data includes 
Rayleigh wave

𝑁 − 2
2

GLR+/. − 1 = 𝛾 𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

= 𝛾

Shorthand 𝑠 𝒙)

samples in processing window

Lecture



554/3/23

Module 4: Build Test Statistic (7/10)

ℋ(: 𝒥 𝒙) = 𝒙- 𝒙. 𝜽 + 𝒏 ~ 𝒩 𝒙- 𝒙. 𝜽, 𝜎+𝑰

≡ 𝑼𝜽 + 𝒏 ~ 𝒩 𝑼𝜽, 𝜎+𝑰

ℋ': 𝒥 𝒙) = 𝒏 ~ 𝒩(𝟎, 𝜎+𝑰)Data is only noise

Data includes 
Rayleigh wave

𝑁 − 2
2

GLR+/. − 1 = 𝛾 𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

= 𝛾

Shorthand 𝑠 𝒙)

samples in processing window ~ ℱ.",.$ 0 under ℋ!

~ ℱ.",.$
𝜽!𝜽
1"

under ℋ"

Lecture
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Module 4: Build Test Statistic (8/10)

𝑁 − 2
2

GLR+/. − 1 = 𝛾 𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

= 𝛾

Shorthand 𝑠 𝒙)

samples in processing window ~ ℱ.",.$ 0 under ℋ!

~ ℱ.",.$
𝜽!𝜽
1"

under ℋ"

The distribution of the detection statistic 𝑠 𝒙# informs the detector algorithm what density 
the histogram will match, and it will allow you to set a threshold for declaring that you have
or have not detected a Rayleigh wave.

Lecture
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Module 4: Build Test Statistic (9/10)

𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

= 𝛾

𝑠 𝒙)

~ ℱ.",.$ 0 under ℋ!

~ ℱ.",.$
𝜽!𝜽
1"

under ℋ"

The distribution of the detection statistic 𝑠 𝒙# informs the detector algorithm what density 
the histogram will match, and it will allow you to set a threshold for declaring that you have
or have not detected a Rayleigh wave.

Important: this detection statistic is 
not Gaussian. The data 𝒙# input to 
𝑠 𝒙# is Gaussian. The detection 
statistic output is not.

Not Gaussian

Not Gaussian

Lecture
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Module 4: Build Test Statistic (10/10)

𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

Not Gaussian

Test ℱ-distribution against ~1 hr of the target data

𝐹+,(5 𝑠 𝒙) ℋ'

Histogram 𝑠 𝒙)

𝑠 𝒙)

Density Estimation
§ Compute 𝑠 𝒙" at every time sample 

in three channel data
§ Exclude extreme quantiles from 

detection statistic
§ Compare normalized histogram 

against theoretical density 

Select distributional parameters to 
minimize density-histogram mismatch

Lecture
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Module 5: 
Compute Test Statistic

Lecture



604/3/23

Single modality detection: terminology, concepts

Status Update: What we’ve Done Already

ℋ': 𝒙 = noise + background

ℋ(: 𝒙 = noise + background + signal

3PDF 𝒙 ℋ(
3PDF 𝒙 ℋ'

= 𝑠 𝒙
ℋ(
≷
ℋ'

𝑡
𝑢 = 1

𝑢 = 0

Data	ModelsSource GLR Detector Decision

Data	pre-processing:	detrend,	taper	and	bandpass	filter		(possibly	in	a	filter	bank)

Density	processing:	estimate	distributional	
parameters	that	shape	density	and	histograms	

Lecture



614/3/23

Module 5: Compute Test Statistic (1/10) Lecture



624/3/23

Module 5: Compute Test Statistic (2/10)

𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼
3(
𝑼2𝒙)

𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

𝑁×2 𝑁×1

Lecture
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Module 5: Compute Test Statistic (3/10)

𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼
3(
𝑼2𝒙)

𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

𝑁×2 𝑁×1

Test hypotheses at every sample. The statistic requires a running matrix product 𝑼2𝑼 and its 2x2 
inverse at every time sample. The algorithm exploits clever matrix storage schemes and low rank 
analytical solutions for inverses.

Lecture
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Module 5: Compute Test Statistic (4/10)

𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

This product is a 2x2 matrix𝑼2𝑼 =
𝑼(6𝑼( 𝑼(6𝑼+
𝑼(6𝑼+ 𝑼+6𝑼+

Lecture
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Module 5: Compute Test Statistic (5/10)

𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

%first compute U’*U: Matrix U is Nx2 in dimension.
%A stores products of elements of U that populate U’*U:

A = [U(:,1).*U(:,1), U(:,1).*U(:,2), U(:,2).*U(:,1), U(:,2).*U(:,2)];

𝑨 = 𝑼2𝑼 =
𝑼(6𝑼( 𝑼(6𝑼+
𝑼(6𝑼+ 𝑼+6𝑼+

The matrix A is an Nx4 array

𝑨"" 𝑡! + (𝑘 − 1)𝛥𝑡
𝑨"$ 𝑡! + (𝑘 − 1)𝛥𝑡

𝑨$" 𝑡! + (𝑘 − 1)𝛥𝑡

𝑨$𝟐 𝑡! + (𝑘 − 1)𝛥𝑡

Lecture
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Module 5: Compute Test Statistic (6/10)

𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

%first compute U’*U: Matrix U is Nx2 in dimension.
%A stores products of elements of U that populate U’*U:

A = [U(:,1).*U(:,1), U(:,1).*U(:,2), U(:,2).*U(:,1), U(:,2).*U(:,2)];

%moving sum of U’*U: (confirmed)

At = movsum(A,[wins(1), wins(2)],'omitnan','Endpoints','shrink');

𝑨 = 𝑼2𝑼 =
𝑼(6𝑼( 𝑼(6𝑼+
𝑼(6𝑼+ 𝑼+6𝑼+

This computation replaces each value of A with a causal sum of wins(1)
samples that consume data that can include noise, or noise + signal

The matrix At is still an Nx4 array

Lecture
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Module 5: Compute Test Statistic (7/10)

𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

%determinant via Cramer's rule of U’*U: (confirmed)
Cr = At(:,1).*At(:,4) - At(:,2).*At(:,3);

𝑨3( =
1

𝐴5𝐴( − 𝐴+𝐴7
𝐴5 −𝐴+
−𝐴7 𝐴(

The matrix Cr is still an Nx1 array

Lecture
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Module 5: Compute Test Statistic (8/10)

𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

%determinant via Cramer's rule of U’*U: (confirmed)
Cr = At(:,1).*At(:,4) - At(:,2).*At(:,3);

%compute the inverse of U’*U, (U’*U)^(-1) (confirmed)
Ati = (1./Cr).*([At(:,4), -At(:,3), -At(:,2), At(:,1)]);

𝑨3( =
1

𝐴5𝐴( − 𝐴+𝐴7
𝐴5 −𝐴+
−𝐴7 𝐴(

The matrix Ati is an Nx4 array

Lecture



694/3/23

Module 5: Compute Test Statistic (9/10)

𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

%compute the product U'*x (confirmed):
Atx = movsum([U(:,1).*x(:), U(:,2).*x(:)],[wins(1), wins(2)],...

'omitnan','Endpoints','shrink');

%compute the product ((U’*U).^1)*U'*x: (confirmed)
Pest = [Atx(:,1).*Ati(:,1) + Atx(:,2).*Ati(:,3), Atx(:,1).*Ati(:,2) 

+ Atx(:,2).*Ati(:,4)];

%compute the product x’*U*((U’*U).^1)*U'*x: (confirmed) as the norm 
of the projection onto the subspace spanned by the columns of U.
Proj = Pest(:,1).*Atx(:,1) + Pest(:,2).*Atx(:,2);

Last matrix is an Nx1 array

The matrix At is still an Nx4 array

1 2

1

2

Self-Study
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Module 5: Compute Test Statistic (10/10)

𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

Summary points:
Vectorize arithmetic to store matrix elements as columns, time indices as rows, use causal 
windows to sum backward, and compute matrix inverses over sliding windows. 
Of course, function movsum.m helps.

Previous slides summarized numerator computation

Similar computation outputs denominator

%compute the product x'*(I - U*((U’*U).^1)*U')*x: (confirmed) as the 
%norm of the projection onto the subspace spanned by the columns of U.

Perp = movsum(x.*x,[wins(1), wins(2)],'omitnan','Endpoints',...
'shrink') - Proj;

Self-Study
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Module 6: 
Estimate Parameters & Thresholds

Lecture



724/3/23

Single modality detection: terminology, concepts

Status Update: What we’ve Done Already

ℋ': 𝒙 = noise + background

ℋ(: 𝒙 = noise + background + signal

3PDF 𝒙 ℋ(
3PDF 𝒙 ℋ'

= 𝑠 𝒙
ℋ(
≷
ℋ'

𝑡
𝑢 = 1

𝑢 = 0

Data	ModelsSource GLR Detector Decision

Data	pre-processing:	detrend,	taper	and	bandpass	filter		(possibly	in	a	filter	bank)

Density	processing:	estimate	distributional	
parameters	that	shape	density	and	histograms

Lecture



734/3/23

Single modality detection: terminology, concepts

Status Update: What we’ve Done Already

ℋ': 𝒙 = noise + background

ℋ(: 𝒙 = noise + background + signal

3PDF 𝒙 ℋ(
3PDF 𝒙 ℋ'

= 𝑠 𝒙
ℋ(
≷
ℋ'

𝑡
𝑢 = 1

𝑢 = 0

Data	ModelsSource GLR Detector Decision

Data	pre-processing:	detrend,	taper	and	bandpass	filter		(possibly	in	a	filter	bank)

When the detection statistic exceeds threshold 𝑡, 
the detector declares the presence of a target 
signal, and that hypothesis ℋ" is true.

Lecture
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Module 6: Estimate Parameters and Thresholds (1/11)

Histogram 𝑠 𝒙) 𝑠 𝒙# ~ ℱ.",.$ 0

𝑓.",.$ 𝑠 𝒙# ℋ!

𝑠 𝒙) =
𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

Lecture
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Module 6: Estimate Parameters and Thresholds (2/11)

𝑠 𝒙) =
𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

Histogram 𝑠 𝒙) 𝑠 𝒙# ~ ℱ.",.$ 0

𝑓.",.$ 𝑠 𝒙# ℋ!

Lecture
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Module 6: Estimate Parameters and Thresholds (3/11)

𝑠 𝒙# ~ ℱ3.",3.$ 0

𝑓.",.$ 𝑠 𝒙# ℋ!

T𝐷1, T𝐷2 = argmin
.",.$

Hist 𝑠 𝒙# $.5
65 − 𝑓.",.$ 𝑠 𝒙# ℋ!

In words: estimate the degree of 
freedom parameters to minimize 
mismatch between the normalized 
histogram and a theoretical central F
density function.

Lecture
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Module 6: Estimate Parameters and Thresholds (4/11)

𝑠 𝒙) =
𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

Histogram 𝑠 𝒙)

The theoretical density predicts the 
threshold that outputs a given false alarm 
rate from the detector

The false alarm rate of how often the 
detector declares ℋ# when ℋ$ is true. 

𝑡

𝑡

𝑡 = 𝐹3.",3.$
)" 1 − Pr78

Lecture
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Module 6: Estimate Parameters and Thresholds (5/11)

𝑠 𝒙) =
𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

Histogram 𝑠 𝒙)

High false alarm rate

High false alarm rate

𝑡

𝑡

The theoretical density predicts the 
threshold that outputs a given false alarm 
rate from the detector

The false alarm rate of how often the 
detector declares ℋ# when ℋ$ is true. 

𝑡 = 𝐹3.",3.$
)" 1 − Pr78

Lecture
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Module 6: Estimate Parameters and Thresholds (6/11)

𝑠 𝒙) =
𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

High false alarm rate𝑡

The theoretical density predicts the 
threshold that outputs a given false alarm 
rate from the detector

The false alarm rate of how often the 
detector declares ℋ# when ℋ$ is true. 

CFAR thresholds are not p-values
§ A threshold is a fixed value you select. You 

invert for it. You do not observe it.
§ A p-value is an observation. If the t present 

in the plot was 𝒕 = 𝒔 𝒙𝒁𝒕 , it could be used 
to compute a p-value.

§ The p-values are computed from the null
distribution and can provide equivalent 
information to the detection statistic.

Compute p-values from the density, or 
the cumulative distribution.

𝑡 = 𝐹3.",3.$
)" 1 − Pr78

Lecture
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Module 6: Estimate Parameters and Thresholds (7/11) Lecture



814/3/23

Module 6: Estimate Parameters and Thresholds (8/11)

𝑝 = _
9(𝒙)

;
𝑓3.",3.$ 𝑠(𝒙) ℋ! 𝑑𝑠

Lecture
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Module 6: Estimate Parameters and Thresholds (9/11)

Select a particular detection statistic value as a 
sample to compute a p-value

Compute the area under the null density fit to 
estimate the p-value, or just use the empirical 
data (if you have enough).

𝑝 = (
'(𝒙)

+
𝑓,-#,,-/ 𝑠(𝒙) ℋ$ 𝑑𝑠

Lecture
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Module 6: Estimate Parameters and Thresholds (10/11)

Select a particular detection statistic value as a 
sample to compute a p-value

Equivalently, use the cumulative distribution to 
estimate the p-value, or just use the empirical 
data (again, if you have enough).

𝑝 = 1 − 𝐹,-#,,-/ 𝑠(𝒙) ℋ$

Lecture
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Module 6: Estimate Parameters and Thresholds (11/11)

Bin all the p-values output from the detection 
statistic time-series

The p-value density is uniform when the 
observations are from the null. When they’re 
not, the density shows a peak near one.

Large detection 
statistics Zeros from tapering

Lecture

Histogram 𝑝
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Module 7: 
Adaptive Bayesian Thresholds 

Lecture



864/3/23

Module 7: Adaptive Bayesian Thresholds (1/11) Lecture



874/3/23

Module 7: Adaptive Bayesian Thresholds (2/11)

Good fit

𝐹3.",3.$ 𝑠 𝒙# ℋ!

Lecture
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Module 7: Adaptive Bayesian Thresholds (3/11)

Good fit Poor fit

𝑓3.",3.$ 𝑠 𝒙# ℋ! 𝑓3.",3.$ 𝑠 𝒙# ℋ!

Lecture
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Module 7: Adaptive Bayesian Thresholds (1/11)

Good fit

𝜀 = Hist 𝑠 𝒙" /.1
21 − 𝑓,-#,,-/ 𝑠 𝒙" ℋ$

𝜀 = Hist 𝑠 𝒙" /.1
21
− 𝑓,-#,,-/ 𝑠 𝒙" ℋ$

Poor fit

Lecture
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Module 7: Adaptive Bayesian Thresholds (5/11)

Good fit Poor fit

Thresholds depend on density shape. Density shape 
depends on effective degrees of freedom (DOF). 
Thresholds therefore depend on DOFs. 

Lecture
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Module 6: Adaptive Bayesian Thresholds (6/11)

Thresholds depend on density shape. Density shape 
depends on effective degrees of freedom (DOF). 
Thresholds therefore depend on DOFs. 

1. Compute the autocorrelation of the (demeaned) detection 
statistic. Find the time to first zero. This defines a grid spacing
for updating DOFs and thresholds.

Lecture
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Module 6: Adaptive Bayesian Thresholds (7/11)

Thresholds depend on density shape. Density shape 
depends on effective degrees of freedom (DOF). 
Thresholds therefore depend on DOFs. 

1. Compute the autocorrelation of the (demeaned) detection 
statistic. Find the time to first zero. This defines a grid spacing
for updating DOFs and thresholds.

Note new tick marks

Lecture



934/3/23

Module 6: Adaptive Bayesian Thresholds (8/11)

Thresholds depend on density shape. Density shape 
depends on effective degrees of freedom (DOF). 
Thresholds therefore depend on DOFs. 

1. Compute the autocorrelation of the (demeaned) detection 
statistic. Find the time to first zero. This defines a grid spacing
for updating DOFs and thresholds.

2. Define a prior density for the first DOF estimate. It’s a Beta pdf. 
It’s centered at the original estimate. It’s spread is how much 
the first DOF controls total misfit error, at each grid point.

Note gray tick marks

Lecture



944/3/23

Module 6: Adaptive Bayesian Thresholds (9/11)

Thresholds depend on density shape. Density shape 
depends on effective degrees of freedom (DOF). 
Thresholds therefore depend on DOFs. 

1. Compute the autocorrelation of the (demeaned) detection 
statistic. Find the time to first zero. This defines a grid spacing
for updating DOFs and thresholds.

2. Define a prior density for the first DOF estimate. It’s a Beta pdf. 
It’s centered at the original estimate. It’s spread is how much 
the first DOF controls total misfit error, at each grid point.

3. Use a Bayes estimate at each coarse grid point to update the 
value for the first DOF. This outputs a grid of first DOF values.

Lecture
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Module 6: Adaptive Bayesian Thresholds (10/11)

Thresholds depend on density shape. Density shape 
depends on effective degrees of freedom (DOF). 
Thresholds therefore depend on DOFs. 

4. Hold the first DOF fixed at the Bayesian updated values.
5. Repeat prior steps (1-3) for the second DOF.
6. Each grid point that ticks | mark now has its own DOF density 

parameters.
7. Compute a threshold 𝑡 at each grid point.

Note gray tick marks

Self-Study
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Module 6: Adaptive Bayesian Thresholds (11/11)

Thresholds depend on density shape. Density shape 
depends on effective degrees of freedom (DOF). 
Thresholds therefore depend on DOFs. 

4. Hold the first DOF fixed at the Bayesian updated values.
5. Repeat steps 1-3 for the second DOF.
6. Each grid point that ticks | mark now has its own DOF density 

parameters.
7. Compute a threshold 𝑡 at each grid point.

Note temporally variable thresholds

Self-Study



974/3/23

Module 8: 
The Rayleigh Wave Detector 

Algorithm

Lecture



984/3/23

Module 8: The Rayleigh Wave Detector Algorithm (1/1) Lecture

Filter-bank output

Detector output

Threshold 
estimates



994/3/23

Recap and Summary



1004/3/23

Single modality detection: terminology, concepts

The Five Steps of Detection (think Scientific Method)

ℋ': 𝒙 = noise + background

ℋ(: 𝒙 = noise + background + signal

3PDF 𝒙 ℋ(
3PDF 𝒙 ℋ'

= 𝑠 𝒙
ℋ(
≷
ℋ'

𝑡
𝑢 = 1

𝑢 = 0

Data	ModelsSource GLR Detector Decision

Origin	of	observables

Form	competing	hypotheses

Gather	data	/	observables

Analyze	data/observables

Accept	or	reject	initial	hypothesis

Data	pre-processing:	detrend,	taper	and	bandpass	filter		(possibly	in	a	filter	bank)

Density	processing:	estimate	distributional	
parameters	that	shape	density	and	histograms	



1014/3/23

Bottom Line Up Front (Low-Fidelity BLUF): We Did…

1. Event?

2. Raw data

3. Data to test

5. Perform detection 

4. Estimate thresholds



1024/3/23

Module 9: Homework Exercises
(Completed Homework Solutions 

will be Published Separately) 



1034/3/23

Module 9: Homework Exercises; Exercise 1 (1/10)

ℋ(: 𝒥 𝒙) = 𝒙- 𝒙. 𝜽 + 𝒏 ~ 𝒩 𝒙- 𝒙. 𝜽, 𝜎+𝑰

≡ 𝑼𝜽 + 𝒏 ~ 𝒩 𝑼𝜽, 𝜎+𝑰

ℋ': 𝒥 𝒙) = 𝒏 ~ 𝒩(𝟎, 𝜎+𝑰)Data is only noise

Data includes 
Rayleigh wave

Self-Study

Problem: Consider the Rayleigh wave digital signal detector that Module 4 discussed. Perform 
the maximization required to compute just the numerator of the GLRT (similar derivations can 
be found in references elsewhere). Recall:
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Module 9: Homework Exercises; Exercise 2
Self-Study

Problem: Consider again the Rayleigh wave digital signal detector that Module 4 discussed. 
Note the detection statistic for non-zero amplitude signals. Argue that the distributional form 
of the detection statistic is central F as sample number 𝑁 becomes much greater than one. 
Recall:

𝑠 𝒙) =
𝑁 − 2
2

𝒙)2𝑼 𝑼2𝑼 3(𝑼2𝒙)
𝒙)2 𝑰 − 𝑼 𝑼2𝑼 3(𝑼2 𝒙)

, and:

𝑼𝜽 + 𝒏 ~ 𝒩 𝑼𝜽, 𝜎$𝑰 , and:

𝒏 ~ 𝒩 𝟎, 𝜎$𝑰 .
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Module 9: Homework Exercises; Exercise 3
Self-Study

Problem: Consider again the Rayleigh wave digital signal detector that Module 4 discussed. 
Write the form of the noncentrality parameter ⁄𝜆 = 𝜽<𝜽 𝜎$ in terms of 𝛼, 𝐴 and 𝐵.
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Module 9: Homework Exercises; Exercise 4

ℋ(: 𝒙-, 𝒙., 𝒙) = 𝒏-, 𝒏., 𝒏) + 𝐴 𝒖-, 𝒖., 𝒖) 𝑸

ℋ': [𝒙-, 𝒙., 𝒙)] = [𝒏-, 𝒏., 𝒏)]Data is only noise

Data includes 
a scaled, rotated 
copy of the template

Self-Study

Problem: Consider a scenario: A three channel sensor records a waveform template 
𝒖- , 𝒖(, 𝒖# . The sensor then rotates an unknown angle. The observer must still detect 

signals sourced by repeating events that match the waveform shape of the original waveform 
template. Design a GLRT to detect signals in noise that accommodates this rotation. Hint: 
consider the orthogonal Procrustes problem, with 𝑸 a rotation matrix:
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Module 9: Homework Exercises; Exercise 5

ℋ(: 𝒥 𝒙) = 𝑼𝜽 + 𝒏 ~ 𝒩 𝑼𝜽, 𝜎(+ + 𝜎'+ 𝑰

ℋ': 𝒥 𝒙) = 𝑼𝜽 + 𝒏~ 𝒩(𝑼𝜽, 𝜎'+𝑰) constrained by 0 1 1 𝜽 = 0.Constrained:

Unconstrained:

Self-Study

Problem: Consider a binary hypothesis test against a constrained mean vector in which the 
noise includes an additional, unknown component of variance under the alternative. Both 
data have an unknown mean vector and a known variance component of 𝜎!$. From the GLR, 
compute the detection statistic. Substantial effort is required to compute its performance. 
Hint: The density function for this GLR requires the Lambert function. The hypothesis test is:

Equation 35 in doi:10.1093/gji/ggab055 provides the solution
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Module 9: Homework Exercises; Exercise 6
Self-Study

Problem: Consider the equation for the Baye’s estimate of the first noncentrality parameter 
discussed in Module 6, (8/11). Suppose the density for the Rayleigh statistic uses four data 
samples on the coarse grid (T𝐷1 associates to grid point 𝑘). Describe the significance of each 
term in the Bayesian estimate for 𝐷1. Note 𝐶, 𝑠 = 2, 𝑠 = 2𝑇𝐵𝑃, and 𝛽 𝑠 are not 
explained or defined, because you should describe them by referring to Baye’s estimates, the 
F-distribution, the time-bandwidth product, and the Beta distribution. 

T𝐷1 =
1
𝐶_9 = $

9 = $>?@
𝑓.",3.$ 𝑧&)A;ℋ! …𝑓.",3.$ 𝑧&;ℋ! 𝛽 𝑠 𝑑𝑠
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Extra Slides



1104/3/23

Module 3: Form Competing Data Hypothesis [EXTRA]

ℋ!: 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏%

ℋ": 𝒙# 𝒙$ 𝒙% = 𝒏# 𝒏$ 𝒏% + 𝒔# 𝒔$ 𝒔%

Data is only noise:

Data includes 
Rayleigh wave

Consider the north to radial conversion: https://service.iris.edu/irisws/rotation/docs/1/help/

Self-Study


